естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Э. п. 3. обусловлено сложным комплексом геофизических явлений. Распределение потенциала поля несёт в себе определённую информацию о строении Земли, о процессах, протекающих в нижних слоях атмосферы, в ионосфере, магнитосфере, а также в ближнем межпланетном пространстве и на Солнце.
Методика измерения Э. п. 3. определяется той средой, в которой наблюдается
поле. Наиболее универсальный способ - определение разности потенциалов при помощи разнесённых в пространстве электродов. Этот способ применяется при регистрации земных токов (см.
Теллурические токи)
, при измерении с летательных аппаратов электрического поля атмосферы, а с космических аппаратов - магнитосферы и космического пространства (при этом расстояние между электродами должно превышать
Дебаевский радиус экранирования в космической плазме, т. е. составлять сотни метров).
Существование электрического поля в атмосфере
Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности
Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие - приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей (см.
Атмосферное электричество)
. Относительно атмосферы поверхность
Земли заряжена отрицательно.
Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический "конденсатор" атмосфера - Земля. В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1-1,4 раза больше, чем отрицательных. Утечка зарядов из атмосферы восполняется также за счёт токов, связанных с молниями и отеканием зарядов с остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:
Ток проводимости + 60 к/(км2·год)
Токи осадков + 20 "
Разряды молний - 20 "
Токи с остриёв - 100 "
__________________________
Всего - 40 к/(км2·год)
На значительной части земной поверхности - над океанами - токи с остриёв исключаются, и здесь будет положительный баланс. Существование статического отрицательного заряда на поверхности Земли (около 5,7․105 к) говорит о том, что эти токи в среднем сбалансированы.
Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушный масс, ветры, турбулентность - всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо (см.
Земной магнетизм) Примером может служить солнечно-суточная электрическая токовая система, которая вызывает на поверхности
Земли суточные вариации магнитного поля. Величина напряжённости электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков
мв/
м, а в высокоширотной ионосфере достигает ста и более
мв/м. При этом сила тока доходит до сотен тысяч ампер. Из-за высокой электропроводности плазмы ионосферы и магнитосферы вдоль силовых линий магнитного поля
Земли электрического поля ионосферы переносятся в магнитосферу, а магнитосферные поля в ионосферу.
Одним из непосредственных источников электрического поля в магнитосфере является
Солнечный ветер. При обтекании магнитосферы солнечным ветром возникает эдс
Е =
v×
b⊥, где
b⊥ - нормальная компонента магнитного поля на поверхности магнитосферы,
v - средняя скорость частиц солнечного ветра.
Эта эдс вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы (см.
Земля)
. Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными - на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1
мв/
м. Разность потенциалов поперёк полярной шапки составляет 20-100
кв.
Ещё один механизм возбуждения эдс в магнитосфере связан с коллапсом противоположно направленных силовых линий магнитного поля в хвостовой части магнитосферы; освобождающаяся при этом энергия вызывает бурное перемещение магнитосферной плазмы к Земле. При этом электроны дрейфуют вокруг Земли к утренней стороне, протоны - к вечерней. Разность потенциалов между центрами эквивалентных объемных зарядов достигает десятков киловольт. Это поле противоположно по направлению полю хвостовой части магнитосферы.
С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг
Земли. В периоды магнитных бурь (См.
Магнитные бури) и полярных сияний (См.
Полярные сияния) электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.
Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линии магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10-2-10 гц), либо как очень низкочастотные волны (колебания с частотой 102-104 гц).
Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мв/км, а во время магнитных бурь усиливается до единиц и даже десятков в/км. Взаимосвязанные переменные магнитное и электрическое поля Земли используют для электромагнитного зондирования в разведочной геофизике, а также для глубинного зондирования Земли.
Определённый вклад в Э. н. З. вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом могут играть вулканические и сейсмические процессы.
Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10-6 а/м2. Эти токи могут быть использованы как естественные источники переменного магнитного поля для магнитовариационного зондирования на шельфе и в море.
Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза требует своего экспериментального подтверждения. Первые измерения показали, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мв/м.
Лит.: Тихонов А. Н. Об определении электрических характеристик глубоких слоев земной коры, "Докл. АН СССР", 1950, т. 73, № 2; Тверской П. Н., Курс метеорологии, Л., 1962; Акасофу С. И., Чепмен С., Солнечно-земная физика, пер. с англ., ч. 2, М., 1975.
Ю. П. Сизов.